Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes

Identifieur interne : 000225 ( Main/Repository ); précédent : 000224; suivant : 000226

Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes

Auteurs : RBID : Pascal:14-0017673

Descripteurs français

English descriptors

Abstract

Transparent electrodes in organic electronic devices are strongly needed in order to replace indium tin oxide (ITO). Some of the best candidates are ZnO films, which have shown both good electronic properties and solution processability compatible with roll-to-roll production of the devices. We present the possibility to engineer the work function of ZnO by blending it with carbon nanotubes (CNTs). B-doped (p-type), N-doped (n-type) and undoped CNTs as well as their blends with ZnO have been characterized by atomic force microscopy (AFM), scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy. The results of Raman spectroscopy demonstrate the substitutional doping of carbon nanotubes, which preserves their covalent structure although increasing the disorder within the nanotubes. The roughness and average shape of grains of ZnO when blended with the doped nanotubes have been measured by AFM. Finally, SKPM shows that the work function of the blends can be engineered from 4.4 ± 0.1 to 4.9 ± 0.1 eV according to the kind of nanotube that is blended even if only a small amount of nanotubes is added to the blend (0.08 wt%).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0017673

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes</title>
<author>
<name sortKey="Urbina, Antonio" uniqKey="Urbina A">Antonio Urbina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road</s1>
<s2>London SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Electronics, Technical University of Cartagena, Plaza Hospital 1</s1>
<s2>30202 Cartagena</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Région de Murcie</region>
</placeName>
</affiliation>
</author>
<author>
<name>JI SUN PARK</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)</s1>
<s2>305-701, Daejeon</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>305-701, Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JU MIN LEE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)</s1>
<s2>305-701, Daejeon</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>305-701, Daejeon</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SANG OUK KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)</s1>
<s2>305-701, Daejeon</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>305-701, Daejeon</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ji Seon" uniqKey="Kim J">Ji-Seon Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road</s1>
<s2>London SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>London SW7 2AZ</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)</s1>
<s2>305-701, Daejeon</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>305-701, Daejeon</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0017673</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0017673 INIST</idno>
<idno type="RBID">Pascal:14-0017673</idno>
<idno type="wicri:Area/Main/Corpus">000332</idno>
<idno type="wicri:Area/Main/Repository">000225</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Boron additions</term>
<term>Carbon additions</term>
<term>Carbon nanotubes</term>
<term>Doping</term>
<term>Electronic properties</term>
<term>Indium oxide</term>
<term>Nanostructured materials</term>
<term>Nitrogen additions</term>
<term>Phosphorus additions</term>
<term>Raman spectroscopy</term>
<term>Roughness</term>
<term>Scanning probe microscopy</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Work functions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Travail sortie</term>
<term>Addition azote</term>
<term>Addition carbone</term>
<term>Nanomatériau</term>
<term>Nanotube carbone</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Couche mince</term>
<term>Propriété électronique</term>
<term>Addition bore</term>
<term>Addition phosphore</term>
<term>Microscopie force atomique</term>
<term>Microscopie champ proche</term>
<term>Spectrométrie Raman</term>
<term>Rugosité</term>
<term>Dopage</term>
<term>ZnO</term>
<term>7330</term>
<term>8107B</term>
<term>8107D</term>
<term>7321</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transparent electrodes in organic electronic devices are strongly needed in order to replace indium tin oxide (ITO). Some of the best candidates are ZnO films, which have shown both good electronic properties and solution processability compatible with roll-to-roll production of the devices. We present the possibility to engineer the work function of ZnO by blending it with carbon nanotubes (CNTs). B-doped (p-type), N-doped (n-type) and undoped CNTs as well as their blends with ZnO have been characterized by atomic force microscopy (AFM), scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy. The results of Raman spectroscopy demonstrate the substitutional doping of carbon nanotubes, which preserves their covalent structure although increasing the disorder within the nanotubes. The roughness and average shape of grains of ZnO when blended with the doped nanotubes have been measured by AFM. Finally, SKPM shows that the work function of the blends can be engineered from 4.4 ± 0.1 to 4.9 ± 0.1 eV according to the kind of nanotube that is blended even if only a small amount of nanotubes is added to the blend (0.08 wt%).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>48</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Organic photovoltaics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>URBINA (Antonio)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JI SUN PARK</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JU MIN LEE</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SANG OUK KIM</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KIM (Ji-Seon)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KREBS (Frederik C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CHEN (Hongzheng)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road</s1>
<s2>London SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electronics, Technical University of Cartagena, Plaza Hospital 1</s1>
<s2>30202 Cartagena</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)</s1>
<s2>305-701, Daejeon</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Energy Conversion and Storage, Denmark Technical University</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hongzhou 310027</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s2>484013.1-484013.11</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000504299280130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0017673</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Transparent electrodes in organic electronic devices are strongly needed in order to replace indium tin oxide (ITO). Some of the best candidates are ZnO films, which have shown both good electronic properties and solution processability compatible with roll-to-roll production of the devices. We present the possibility to engineer the work function of ZnO by blending it with carbon nanotubes (CNTs). B-doped (p-type), N-doped (n-type) and undoped CNTs as well as their blends with ZnO have been characterized by atomic force microscopy (AFM), scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy. The results of Raman spectroscopy demonstrate the substitutional doping of carbon nanotubes, which preserves their covalent structure although increasing the disorder within the nanotubes. The roughness and average shape of grains of ZnO when blended with the doped nanotubes have been measured by AFM. Finally, SKPM shows that the work function of the blends can be engineered from 4.4 ± 0.1 to 4.9 ± 0.1 eV according to the kind of nanotube that is blended even if only a small amount of nanotubes is added to the blend (0.08 wt%).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C30</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C21</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Travail sortie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Work functions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition azote</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nitrogen additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition carbone</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Carbon additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanotube carbone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Carbon nanotubes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition bore</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Boron additions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition phosphore</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Phosphorus additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Microscopie champ proche</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Scanning probe microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Raman spectroscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Doping</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Doping</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7330</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0017673
   |texte=   Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024